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(G) A basic difference in performance between GS and MGS is that once GS 
loses orthogonality, it produces almost identical vectors thereafter. The maximum 
inner product is usually .999 etc. (and this is to be expected from the error analysis 
of 3). On the other hand, MGS continues to generate distinct, if not orthogonal, 
vectors. Thus the inner products obtained (after orthogonality is lost) normally 
range between 0.1 and 0.9. This is no doubt due to the fact that Vk is always or- 
thogonal to vkli within machine accuracy. This is suggested by the error analysis 
and confirmed by experiment. 

I wish to acknowledge the able assistance of Rex Wolf in preparing the programs 
for these experiments. 

A Matrix Reduction Problem 

By J. W. Moon and L. Moser 

1. Introduction. Let An denote an n by n matrix of O's and l's that is non- 
singular over the field of residues modulo 2. Fine and Niven [1] have shown that 
these are c.2' such matrices where 

Cn = II 1 - (- 

Let f (An) denote the minimum number of operations needed to transform An into 
the identity matrix I1.. (It may be necessary, of course, to interchange certain 
rows but we do not count this as an operation.) The object in this note is to give 
bounds for f(An) which at least determine its order of magnitude for almost all 
matrices A. . These may be of some interest in connection with the question of the 
minimal number of operations required to invert a matrix. Indeed our methods and 
results apply with only minor modifications to the case of matrices with real ele- 
ments provided that in performing arithmetic operations only a fixed number of 
significant digits is retained. 

THEOREM. There exist positive constants c1 and C2 such that 
2 2 cin 

<f(A,) < C2n 

log n log n 

for almost all matrices An; i.e. for all but a fraction which tends to zero as n tends to 
infinity. 

2. A Lower Bound for f(An). We will show that 

f(An) > X = - 
log2 n 

for almost all matrices An where e is an arbitrary positive constant. 
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If A. can be transformed into In in t operations, then clearly In can also be trans- 
formed into An in t operations. Hence, the number of matrices An such that f(An) < 
X certainly does not exceed 

((2)) n! 

since after choosing a pair of rows in one of (2) ways there are 3 alternatives; we 
may add either of the rows to the other or we may leave them unchanged. The n! 
takes into account the number of ways of permuting the rows. But, 

n!~ (3) 
en+2X. 

( ()) (2)< 

The quotient of the last expression divided by cn2'2X the total number of matrices 
An X tends to zero. This suffices to complete the proof of the lower bound for f(An). 

3. An Upper Bound for f(An). We will now show that if the matrix An can be 
transformed into In in a finite number of operations then it can be so transformed 
in at most (4 + E)n2/log2 n operations if n > n(e). 

Let k be a positive integer less than n. We may suppose that the first row of An 
does not begin with k O's. Add the first row to every other row that begins with 
the same k entries. Now consider the second row of the matrix that does not begin 
with k Q's; add this row to every other row that begins with the same k entries. 
Repeat this process as long as possible. We may then rearrange the rows to obtain a 
matrix in which no two of the first t rows have the same first k entries and the last 
n - t rows all begin with k O's, where t is some integer not exceeding 2k - 1. This 
has been accomplished with at most n - t operations. It must be that k ? t for 
otherwise it would be impossible to transform An into In. At most k (t - 1) more 
operations are needed to change the first k columns to upper triangular form with 
l's on the main diagonal. At the end of this stage at most (n - t) + k(t - 1) < 
n - 3k + k2k operations have been employed. 

We now repeat this process to the entries in the next k columns and bottom 
n - k rows. With at most n - 3k + k2k more operations we obtain a matrix which 
has l's on the main diagonal and O's below the main diagonal in the first 2k rows. 
(We ignore the effect of these operations on the entries above the main diagonal for 
the time being.) By repeating this process-at most n/k + 1 times we will obtain an 
upper triangular matrix with ones down the main diagonal. It is clear that the opera- 
tions performed at each stage do not affect the properties established at the pre- 
ceding stage. 

To obtain O's above the main diagonal also, we now repeat this process, starting 
at the lower right corner and working up the main diagonal. Therefore, the number 
of operations necessary to transform An into In X if it can be so transformed, does not 
exceed 

2 we + 1 (n - 3k + k2k) = 2 n an + 2uk + k(2o - 3) -2n g 

If we now let k = [1og2 n - og2 log2 n], then an upper bound for the resulting ex- 
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pression is 4n2/ (log n- 10g2 10g2 n - 1). The result stated at the beginning of this 
section now follows immediately. 

4. Generalizations. The corresponding problem may be considered for n by n 
matrices whose entries are taken from the integers 0, 1, . , k - 1. If an operation 
on such a matrix consists of adding a multiple of some row to some other row modulo 
k, then it can be shown that the foregoing theorem remains valid in this more general 
situation for any fixed value of k. In fact, the bounds in Sections 2 and 3 will still 
hold if log2 n is replaced by logk n. 

Evaluation of In(b) = 27' f (sin x) cos (bx) dx and of 

Similar Integrals 

By Rory Thompson 

Medhurst and Roberts [1] suggest the problem of evaluating In (b) for non- 
integral values of b. There will be developed in this note an effective recursion scheme 
for such a calculation. In particular, it can be used to evaluate In (0) for moderate 
values of n. 

Following a suggestion by Hamming [2, p. 164], we differentiate In (b) with 
respect to the parameter b, which is permissible by virtue of uniform convergence 
of the resulting integral for n > 2 and continuity of the corresponding integrand 
with respect to both x and b. 

Thus we obtain 
go * n-1 

In'(b) = -27r-1 f Sin X) sin x sin (bx) dx 

go 
x / 

= r 1 sin x) [cos (b + 1)x -cos (b - 1)x] dx 

= LIn-,(b + 1) - In1(b- 1)] 

If the first expression for In (b) is integrated by parts there results the relation 

I '(b) = (n - 1)b' 27K1 sin cos (bx) dx 

go / \n-1 

- nb'1 27r' f (s7n x) cos x cos (bx) dx 

= b In(b) -2b [In-1(b + 1) + In-1(b - 1)j. 
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